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ABSTRACT

The steady–state analytical and numerical solutions are obtained for the mixing of effluent with Newtonian

fluid in subsurface. The problem presented in this research work is flow through a channel packed by

homogeneous porous media, associated to environmental sciences. Simulations are performed employing

a time–marching scheme. Numerical method used in the study is a finite element method, while, the

frame of reference is Cartesian coordinate system. Adopted algorithm follow semi-implicit technique

through Taylor-Galerkin/Pressure-correction scheme. Analytical solution is Obtained and compared

with the numerical predictions. Impact of Darcy’s number, influence of change in diffusion coefficient of

effluent concentration and time dependent effects of velocity profile is investigated. Numerical predictions

are compared against both steady–state and time–dependent analytical solutions obtained in the present

study, and observed very good agreement. Various interesting features of the flow are reported. The

numerical results exhibit that with increasing fluid inertia, the effluent disperses immediately in flow

field when entering from same direction with the flow of fluid. While, increasing dispersion coefficient

of effluent at fixed rate of inertia the effluent disperses faster and occupy large area of upstream.

Key Words: Finite Element Method, Numerical Simulation, Newtonian Fluids, PorousMedia,

Concentration, Effluent.

Mixing of the solute transport in a

groundwater ûow is a very exciting and

fascinating topic for the researchers. A large

amount of theoretical as well as numerical models have

been developed, however, only few are referred here [1-6].

Nevertheless, their validity is still under question.

Moreover, the importance and its high level of complexity
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1. INTRODUCTION

is involved in a large number problem, such as, agricultural,

environmental and industrial problems. For instance,

seawater incursion in fresh water coastal aquifers and

seepage from landûlls have given impetus to the

researchers for further investigation of this problem and

precise modelling of transport of salt water and develop

sophisticated models [7-8].
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In the vicinity of coastal areas, the intrusion of sea water

in subsurface is a core problem, where fresh groundwater
aquifers contaminate. In fact, mixing of saline in freshwater

make it inappropriate for human consumption and also

reduce the freshwater resources [9]. Therefore,

groundwater assets shall be wisely investigated, due to

increasing of human population near coastal areas and

rising demand in agricultural and industrial use, keeping
stability among the saline water and fresh water bodies

[10].

A huge percentage of the world’s population depend upon

groundwater resources and exploits them via private

domestic wells or public water supply. Nevertheless,

groundwater resources are still now inadequate for human
needs in many zones of the world due to various

contamination problems.  Saline interruption in the

subsurface is the most widespread source of

contamination to coastal aquifers, however, it is not the

only source. Other sources of contamination include

leachate from municipal landfills, leaky underground
storage tanks that store saline water [11].

For the resolution of density coupled ûow in

subsurface, a numerical model has been developed [1],

for mass balance equation this model adopts a MHFE

(Mixed Hybrid Finite Element) technique. Whilst, for

solute transport equation, MHFE is used for dispersion
part and DFE (Discontinuous Finite Elements)

technique is employed for the convection part

respectively. The   research work is based on flow of

groundwater and solute transport. The model was

validated and analysed against two standards test

cases of available in the literature [10-13].The authors
concluded that MHFE and DFE are more accurate than

conforming ûnite elements of [1] and concerning Finite

differences of [13].

For inûltration of saline water in homogeneous and

saturated subsurface, a 2D (Two-Dimension) numerical

model was presented [2], the model was based on mixture

of DFE and MHFE methods. Efûciency of numerical

solution confirmed on standard benchmarks, for example,

the problems of [10-11]. The model was verified against

the experimental results obtained by Trinh [14] and the

numerical predictions compared with the analytical

solutions of Travoix et. al.[15].

2. PROBLEM DEFINITION AND
MATHEMATICAL FORMULATION

The problem investigated in this study is effluent mixing,

which is mixing of saline water into freshwater; this

mixing may be in surface water or may be in subsurface/

groundwater. The schematic diagram of 2D channel is

shown in Fig. 1. In reality, near coastal area freshwater

aquifers contaminate by seawater intrusion or when flow

of freshwater in surface and subsurface, periodically,

obstructed by saltwater. However, here, consideration

is focused, initially, only on groundwater mixing, i.e.

both freshwater and saline water flow in same direction

in a channel. Flow is assumed in unidirectional and

uniform in a channel, where both side walls are

considered solid. While, porous material anticipated

isotropic and homogeneous, that reduces the problem

into the 1D.

The incompressible two constant viscosity flows of

Newtonian fluid past rectangular channel loaded by

porous matrix is analysed. CDE (Convection Dispersion

Equation) is the most extensively used for the velocity

distribution models. The flow is governed by the

conservation of mass equation, Darcy’s-Brinkman [12]

momentum transport equation partially coupled with saline

water concentration equation in Cartesian coordinates
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frame of reference. In the absence of body force can be

presented as:

0.  u (1)
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Where the velocity vector field of fluid is denoted byu =
(u,v,w), the absolute viscosity and mass density of the
incompressible fluid (per unit liquid volume) is denoted
by and  respectively, and  both are supposed to be
constant. While, respectively and k are the porosity and
intrinsic permeability of the porous material, t is the time
and the isotropic pressure per unit density denoted by p.
Whilst, Sc is the solute concentration of saline water,is
the diffusion–dispersion coefficient of solute
concentration and vmax is the maximum water velocity. In
Equation (2) the porous medium is assumed
homogeneous and isotropic.

In case of unidirectional flow, the components of velocity
vector, v and w vanishes. Only velocity component ‘u’ of

axial direction is considered. Therefore, velocity
component in axial direction in uniaxial flow condition
depend only on transversal ‘y’ direction u=f(y) and all
velocity gradient in ‘x’ direction become zero. Whereas,
the pressure gradient is assumed to be constant in
transversal direction ‘y’ and local convective acceleration
disappears also. The Equations (1-3) slashes in 1D as:
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It is often convenient to cast the equations in
dimensionless form, adopting non-dimensional unknowns
u*, y*, t*, k*, * and S*

c.To select the suitable choice of
characteristics scaling factors, u = Vcu*, y = Lcy*, k= k*

and t = t*Lc/. Where u*non–dimensional axial velocity
component and transversal displacement is represented
byy*. Whereas, k* is the dimensionless permeability of
the porous matrix and t* is the dimensionless time. Effluent

FIG.1. SCHEMATIC DIAGRAM OF TWO–DIMENSIONAL CHANNEL



Mehran University Research Journal of Engineering & Technology, Volume 37, No. 2, April, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
408

Numerical Simulation of Mixing of Effluent through Porous Media: The Effects of Local Inertia on the Flow

concentration Sc = S*
c S0, diffusion–coefficient = v*.

While, is the kinematic viscosity, V
c 
is the characteristic

velocity taken as reference axial velocity 












x

pL
V c

c 

 2

 and
L

c 
is the characteristic length chosen as half width of the

channel. In the dimensionless form, the governing system
of equations becomes:
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Where dimensionless number and coefficient are as flows:

Darcy’s number 




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For the flow problem in focus, it is essential to set suitable
initial and boundary conditions to provide a well–posed
specification. Simulations starts after quiescent initial
state u(0,y) = 0. Whereas, for velocity component, on
both boundary points the conditions are prescribed a as:
u(t,0) = V

max
and u(t,1) = 0. While, for concentration

equation the initial condition set: S
c
(0,y) = 0 and for

boundary conditions on both points are fixed as:
S

c
(t,0) = umax and S

c
(t,1) = 0.

3. ANALYTICAL SOLUTION

To obtain the analytical solution of the 1D Darcy’s-
Brinkman momentum Equation (8), conditions follows as:

Initial Condition: u(0,y) = 0, whereas, on both boundary
points the condition is fixed as: u(t,0) = umax and u(t,1) = 0.
The computational domain is 0  y  1.

Here Equation (8) along with it boundary conditions is

non–homogeneous, therefore, assuming two function v

and H, v is a function of time and space and H is a function

of space only as u(t,y) = v(t,y) + H(y).

For conversion into homogeneous partial differential

Equation (3) is distributed in two parts as follows:
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Then Equation (3) can be written as:
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For velocity component ‘v’, the initial and boundary

conditions are changed into homogeneous conditions. The

initial condition is set as: v(0,y) = 0 and so on both boundary

points condition is fixed as: v(t,0) = 0 and v(t,1) = 0.

3.1 Steady–State Solution

For steady state, the time derivative in Equation (11)

vanish 





 



0
t

v
, hence the Darcy’s–Brinkman Equation (11)

can be written in ordinary differential equation as:

1
1

2

2
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


v

Dy

v

a
(13)

Equation (13) is simple non–homogeneous ordinary

differential equation, subject to homogeneous conditions
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on both sides of the domain. For velocity v(t,y), the

analytical solution of Equation (13) after some simple

mathematical calculation become:
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Similarly, boundary conditions for H(y) are as: H(0) = vmax

and H(1) = 0, the solution of H(y) become:
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Hence complete solution of steady–state velocity (u) is
u(0, y) = v (0, y) + H(y) so that:
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For steady–state solution, graphs are given at different
Darcy’s numbers through Equation (16). It is observed
that, at high Darcy’s number (Da>> 1) flow become
parabolic, while, at low Darcy’s number (Da<< 1) the flow
behave like plug flow as shown in Fig. 2(a-b).

 3.2 Unsteady State Solution

The momentum Darcy’s-Brinkman Equation (11) is:

t
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While, the condition for initial–state v(0,y) = 0and on the

both boundary points condition over the domain of

(a) DA = 0.1, 0.01 AND 0.001 (b) DA = 1, 1000 AND “

FIG. 2. GRAPH OF THE ANALYTICAL AND STEADY–STATE NUMERICAL VELOCITY PROFILE AT DIFFERENT DIMENSIONLESS
DARCY’S NUMBER VALUES
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interest (0 < y < 1) is v(t,0) = Vmax and v(t,1) = 0. Equation

(17) is non–homogeneous and boundary conditions at

any time are also non–homogeneous.

The Equation (17), subject to the initial and boundary

conditions, have been determined through Laplace
Transform. For time domain ( 0t ), assuming F(t) be a

function then, by definition the integral is:
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As transform of derivative can be defined, if f(t), f’(t),…,fn-

1(t), these all functions are continuous over the domain
[0,]. If fn(t) is piecewise continuous in the domain of

interest [0,], then the function is of exponential order.
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Hence, L{v(t,y)} = V(s,y). So, by applying the Laplace
Transform method, we have:
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of Equations (18-19) is given as:
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Apply Inverse Laplace transform of equation can be
solved by residues theorem and the result is given as:
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Where  212   nn

The analytical solutions Equation (20) of Equation (17)

achieved by using Laplace Transform techniques at

different values of time t with unit value of Darcy’s

number.

For the time dependent solute concentration Equation

(9) an analytical solution is obtained after some simple

mathematical calculation adopting similar approach and

also has been given by Ogata and Banks [16] as:
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Where erfc is the complementary error function.

Erfc(v) =1 – erf(v), where, erf is the error function,
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v
duueverf
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4. NUMERICAL SCHEME

In this study a time-marching finite element numerical
scheme adopted for the simulations. For time derivative,
this scheme use Taylor series expansion in multi–stages
to discretise temporal domain. At half time step, forward
difference is applied to achieve the solution from initial
state, while for full time step, central difference is
employed using both initial state information and
solution of half time step.  While, for spatial
discretisation, Galerkin approach is adopted. For
pressure gradient and viscous diffusion terms a Crank–
Nicolson approach is used. In this way a semi–implicit
scheme is achieved here. This scheme was tested and
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proved efficient by Qureshi and Baloch [17]. Through
this approach a second and higher order accuracy is
attended. Furthermore, the details are given in the
previous studiesof Mahessar et. al. [18] and Shaikh [19].

For both, velocity and concentration, quadratic finite
elements approximations are adopted. To obtained
accurate and close to analytical solution eighteen numbers
of elements for single momentum equation, whilst, for
both equations thirty-six elements appears to be more
appropriate choice to adopt. For time marching, stabilise
the solution process tolerance for t is taken  =10-5 and
to terminate the procedure, a relative least square
increment 
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Finite Element semi–implicit form of fully discrete system

in compact matrix formulation

From dimensionless Equations (8-9), the fully-discretised

formulation is:
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Step-2: Compute velocity component and concentration
of effluent at full time step (n + 1) from given information
at initial (n) and half time step (n+1/2) levels:
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Where pyramids are defining in (Shaikh, [16]).

5. NUMERICAL RESULTS AND
DISCUSSION

5.1 Impact of Darcy’s Number

At different low values of Da (0.001, 0.01 and 0.1) and Da

(=10) near wall effluent slowly diffused whilst, velocity
behaviour shows plug flow at Da (=0.01 and lower) with
increasing Da (=0.01 and 0.1) shows a parabolic. Similarly,
with increasing Da (1.0, 1000, and ), the behaviour of
effluent and velocity is same as lower Darcy’s, as
illustrated in Fig. 3(a-b).

Different low values of Darcy’s (=0.001, 0.01 and 0.1) are
used and with increasing Dc (=1000) near wall effluent is
immediately diffused whilst, velocity behaviour shows
plug flow at lowest Da and with increasing Da the velocity
behaviour shows a parabolic as displayed in Fig. 4(a-b).
Similarly, at higher Darcy’s (=1 to Infinity) and with
increasing Dc (= 1000) near wall effluent is sharply
diffused. Whilst, velocity behaviour shows a parabolic.
With increasing Dc (= 5000), the effluent is too sharply
diffused at lower and higher Darcy’s as exhibited in
Fig. 5(a-b).

5.3 Time Dependent Effects of Velocity
Profile at Lower and Higher Darcy
Numbers.

At low values of Darcy’s number, the flow behaviour of
velocity profile shows plug flow at Da (= 0.001 and 0.01)
with sharp boundary layer likewise plug flow, whilst, at
Da (=0.1) with thick boundary layer at same corresponding
order of maximum value as presented in Fig. 6(a-b). At
higher values of Darcy’s, the development of time
dependent velocity profile increase and behaviour of
velocity shows finally parabolic.
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(a) D
A
 = 0.1, 0.01 AND 0.001

(b) FIXED D
C
 = 1000 VALUE

FIG. 4. STEADY–STATE NUMERICAL SOLUTION AT DIFFERENT DARCY’S VALUES

(b) D
C
 = 10

(a) D
A
 = 0.1, 0.01 AND 0.001

FIG. 3. STEADY–STATE NUMERICAL SOLUTION AT FIXED DIFFUSION COEFFICENT OF CONCENTRATION AND DIFFERENT
DIMENSIONLESS DARCY’S NUMBER VALUES
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(a)

(b)

FIG. 6. TIME–DEPENDENT NUMERICAL SOLUTION AT INCREASING DIMENSIONLESS DARCY’S NUMBER VALUES FROM D
a
 = 0.1

TO 100000 AND VARYING TIME STARTING FROM INITIAL–STATE TO STEADY–STATE

(a) D
A
 = 0.1, 0.01 AND 0.001

(b) FIXED D
C
 = 5000 VALUE

FIG. 5. STEADY–STATE NUMERICAL SOLUTION AT DIFFERENT DIMENSIONLESS DARCY’S NUMBER VALUES
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6. CONCLUSION

For the mixing of effluent with unidirectional flow of

Newtonian fluid in the presence of porous material,

the steady–state numerical prediction as well as

analytical solutions are realised. For numerical

prediction a time–marching finite element scheme is

used. From the 1D results, two step semi–implicit

Taylor–Galerkin, algorithm is adopted. A very good

agreement is achieved between analytical and

numerical predictions.

The impact of Darcy’s number, influence of change in

diffusion coefficient of effluent concentration and time

dependent effects are displayed in different figures and

field plots are analysed. Also, the validities of results
are shown through velocity and concentration profiles,

reported through graphs. It is concluded that the velocity

profile, initially, with fixed concentration (Dc)

demonstrates a plug flow at small values of Darcy’s

number, while increasing Darcy’s number flow profile

become parabolic. Whilst, at inlet the concentration
profile of effluent exhibits very slow growth, whereas,

at exit develop rapidly. While, time–dependent effects

displayed, initially, gentle progress in velocity profile is

observed and the similar phenomena at steady–state

case as well perceived.

7. NOMENCLATURE
x Axial Coordinate

y Transverse Coordinate

V Axial velocity

p Pressure

Da Darcy’s number

t Time

Vc Reference Axial Velocity

x* Dimensionless Axial Coordinate, x/L

y* Dimensionless Transverse Coordinate, y/L

V* Dimensionless Axial velocity, u=u0

L Half Channel width

Dc
Dispersion Coefficient

t* Dimensionless Time

Greek Symbol

 Porosity of the Porous Media

 Fluid Density

k Intrinsic Permeability of the Porous Medium

 Dynamic Viscosity

k* Modified Permeability of the Porous Medium
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