A Novel Parallel Algorithm for Edit Distance Computation

MUHAMMAD MURTAZAYOUSAF*, MUHAMMAD UMAIR SADIQ*, LAEEQASLAM*,
WAQAR UL QOUNAIN*, AND SHAHZAD SARWAR*

RECEIVED ON 14.06.2017 ACCEPTED ON 21.08.2017
ABSTRACT

Theedit distance between two sequencesistheminimum number of weighted transfor mation-oper ations
that arerequired totransform onestringintotheother. Theweighted transfor mation-operationsare
insert, remove, and substitute. Dynamic programming solution tofind edit distanceexistsbut it becomes
computationally intensivewhen thelengthsof stringsbecomevery large. Thiswork presentsanovel
parallel algorithm to solveedit distance problem of string matching. Thealgorithm isbased on resolving
dependenciesin thedynamic programming solution of theproblem and it isableto computeeach row of
edit distancetablein paralldl. Inthisway, it becomespossibleto computethe completetablein min(m,n)
iterationsfor stringsof sizem and n wher easstate-of-the-art parallel algorithm solvestheproblemin
max(m,n) iterations. The proposed algorithm alsoincreasestheamount of parallelism in each of its
iteration. Thealgorithmisalso capableof exploiting spatial locality whileitsimplementation. Additionally,
thealgorithm worksin aload balanced way that further improvesitsperformance. Thealgorithmis
implemented for multicoresystemshaving shared memory. | mplementation of thealgorithmin OpenM P
showslinear speedup and better execution timeascompar ed toate-of-the-art paralld approach. Efficiency

of thealgorithm isalso proven better in comparison toitscompetitor.

KeyWords Edit Distance, L evenshtein Distance, OpenM P, Speedup.

1. INTRODUCTION

mparison of two strings helps in solving
problems from many domains including
bioinformatics (DNA analysis) [1], text-
processing (spell-checkers, plagiarism detection, and
error correction), signal processing, information retrieval,
speech recognition, and web mining. String matching or
string comparison comesinto different forms: finding if a
string is substring of another string, identifying the
longest common subsequence, and checking how similar
or dissimilar two stringsare[2]. All theseforms of string
matching have their own applicationsin different areas.

This work will be focusing on the problem of checking
how similar two strings are, in other words, how closely
two stringsresemble. In thisregard, awell-defined measure
exists, called Levenshtein distance. In simple words,
Levenshtein distance is the number of transformation-
operations (deletion, insertion, or substitution) required
to transform one string to another. Sometimes,
Levenshtein distance is also referred as edit distance
between two strings. Edit distancefind itsapplicationsin
natural language processing where spell correctionismost
common use of it and in computational biology it isused

Corresponding Author (E-Mail:murtaza@pucit.edu.pk)
* Punjab University College of Information Technology, University of the Punjab, Lahore.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

223

A Novel Parallel Algorithm for Edit Distance Computation

for matching and aligning DNA sequences. It isalso used
for machinetrand ation, information extraction and speech
recognition.

Dynamic programming solutionsexist to find edit distance
but it becomes computationally intensive when the
lengths of strings become very large. Hence, a paralel
algorithm can always help in finding the solution in
reasonable time. This study presents a novel parallel
algorithm to compute edit distance. Thetheoretical design
isthoroughly evaluated and compared with state-of -the-
art parallel approach. Further, thea gorithmisimplemented
in OpenM P for multicore systemsthat showed improved
results.

Rest of the paper isorganized asfollows. Section 2 explains
the Levenshtein distance, Section 3 discusses parallel
approaches to compute Levenshtein distance, hence
cover the related work, Section 4 presents the
justificationsfor our novel parallel approach to compute
Levenshtein distance and theoretically compares our
approach with state-of-the-art, and Section 5 discusses
the implementation and experimental results. Finally,
Section 6 concludes the work highlighting future
directions.

2. LEVENSHTEIN DISTANCE (EDIT
DISTANCE)

This section defines thel evenshtein distance or simply
edit distance and explain by using a simple example, its
mathematical formulation, and its dynamic programming
solution.

2.1 Definition

Given two strings/sequencesA = (a,, a,,....,a,) and B =
(b,,b,,....,b)of szemand nrespectively, over afinite X =
(X}, XX, the edit distance between A and B,
represented by ED, jisthe minimum number of weighted
transformation-operations that are required to transform

A into B. This work assumes that the weighted
transformation-operations are insert, remove, and
substitute and weight of each operationis 1.

If A=(Thursday) and B =(Tuesday)then ED, , = 0 because
no transformation-operation isrequired because both the
stringsareidentical.

If A=(Thursday) and B =(Tuesday)then ED, , = 2 because
oneremove (remove‘h’) and one substitution (replace‘r’
with‘€e") isrequired to transformA into B.

2.2 M athematical For mulation

Given two strings/sequences A = (a,,a,,...,a) and B =
(b,b,,...,b) of size m and n respectively, over a finite
alphabet X=(x_,x,,...X,), the edit distance between A and
B, represented by ED, , is defined by the recurrence in
Equation (1).ED,(i,j) is the distance between the first i
characters of string A and thefirst j charactersof string B.

j Ifi=0
i Ifj=0
| EDuli-1j-1) ifAli-1)=B(j-1)
Do 1) = ED,,(i,j—1)+1 1
min EDAB(ifl,j)‘Fl Otherwise
EDpgli-1,)+1

Where(l<l<mandl<j<n)

2.3 DynamicProgramming Solution

Giventwo strings of length m and n, adistancetable D of
size (m+1, n+1) is built in which D[i,j] is the distance
between thefirst i charactersof first string and thefirst
characters of second string. D[m, n] would be edit distance
between both strings. This table can be filled in row-
major order, i.e. row-by-row from top to bottom, and | eft
to right within each row or in column major order i.e.
column by column from left to right and top to bottom
within each column. Sequential calculation of the table
takes O(mn) timewhere m and n arelengths of strings. A

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

224

A Novel Parallel Algorithm for Edit Distance Computation

sample distancetable for stringsA =(OMONA) and B =
(MOONj) ispresentedin Fig. 1. Where ED, , = 3 because
two substitutions (replace ‘O’ with ‘M’ and replace ‘M’
with ‘O’) and one remove (remove ‘A’) is required to
transformA into B.

2.4 Paralld Algorithm Formulation

This section discusses that how the distance table can
be built in parallel. In order to do that, it isimportant to
understand how the entries of the table are populated.
Asmentioned in the previous section, in case of sequential
computation, the table can be filled in row-major or
column-mgjor order. But, to compute more than one entry
simultaneously, some dependency analysisis required.

25 Computational Dependency Analysis

It can be observed from Equation (1) that each value of
the distancetableis computed based on three other values
of the distancetablewhich arein previousrow and column
asdepicted in Fig. 2. According to this dependency neither
arow nor acolumn can be calculated in parallel because
computation of every entry in arow is dependent on the
previous entry in same row and sameistruein case of a
column.

3. RELATED WORK

To solveedit distance problem in parallel major solutions
are based on bit paralel [3] and diagonal parallelism
approach. Bit parallel algorithms depend upon machine
word size but as machine word size increases their
performance decreases hence these are not applicable to
general processors[4].

(0] M O N A

0 1 2 3 4 5

M 1 1 1 2 3 4
(0] 2 1 2 1 2 3
(6] 3 2 2 2 2 3
N 4 3 3 3 2 3

FIG. 1. A SAMPLE EDIT DISTANCE TABLE

Parallel algorithmsto compute edit distance that are based
on diagonal approach, compute the distance table
diagonally i.e. one diagonal at a time because from
dependence analysis it can be observed that each
diagonal is dependent only on previous diagonal as
shownin Fig. 3. Recently, most of the parallel algorithms
to compute edit distance are based on diagonal approach.
With this approach, if there are two strings of sizem and
n, then at most min (m, n) cells of distance table can be
computed in parallel asit would be size of largest diagonal.
Further, when m and n areamost same, thislargest amount
of parallelism will be attained only few number of times.
With varying amount of parallelism at each step, itisalso
hard to maintain load balancing in diagonal based
approaches[5-7].

D[i-1, j-1]

N

D[i-1,]

D[, j-1] D[i.]

<iF

FIG. 2. COMPUTATIONAL DEPENDENCY OF DI, J] IN EDIT
DISTANCE TABLE

FIG. 3. DIAGONAL APPROACH

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

225

A Novel Parallel Algorithm for Edit Distance Computation

Parallel algorithm to solve edit distance problem usedin
[8] a'so usesdiagonal based approach but it is specific to
FPGA. Niewiarowski et. a. [9] used .NET Framework 4.0
technol ogy with aspecificimplementation of threadsusing
the System.Threading.Tasknamespace library and it
requires specific number of threads to be executed in
paralel. For different amount of threads it is not cost
effective.

4. MAJOR CONTRIBUTION-NOVEL

PARALLELALGORITHM

This section presents the novel parallel algorithm to

compute edit distance.

Definition-1: if i"" character of first string matcheswith ™"
character of second string then DJi,j] is called a match

Definition-2: if i™" character of first string does not match
with j character of second string then DJ[i,j] is called a
non-match case.

Considering acell D[i,j-1] of edit distance table with the
edit distance ‘n’, there are following observations:

Observation-0: With the assumption that the weight of
each transformation-operation (insert, remove, and
substitute) is 1, it is obvious based on recurrence of
Equation (1) that the edit distance of two adjacent cellsin
arow or inacolumnwill not differ by morethan 1. Hence,
D[i-1,j-1] may have‘n-1',‘n",or ‘n+1’.

Observation-1: If the edit distance in the i row is
increasing and the edit distance in previous row is also
increasing. Possible cases, depicted in Fig. 4.

Observation-2: If the edit distance in the i™ row is
increasing and the edit distance in previous row remains
same. Possible cases, depicted in Fig. 5.

case.
Case (a) Case (b) Case (c)
-1 j i1 . -1 j
i-1 nl n i-1 n nl i-1 1 2
i n n+1 i n n+1 i n n
Case'd Not possible because DJi,j] cannot have a value greater than 'n', hence it violates the recurrence of Equation (1).
Case'b' Only possible if DIi,j] is a non-match case, henpe according to recurrence of Equation (1), D[i,j]
would take min(n, n, +1)+1.
Possible in following two situations:
Case'c If D[i,j] is a match case, hence according to recurrence of Equation (1), D[i,j] takes the value of top-left cell.
If D[i,j] is a non-meatch case, hence according to recurrence of Equation (1), D[i,j] would take min(n, n+1, n+2)+1.
FIG. 4. CASES FOR OBSERVATION-1
Case (a) Case (b) Case (c)
j-1 j j-1 j -1 j
i-1 n-1 n-1 i-1 n n i-1 n+1 n+1
i n n+1 i n n+1 i n n+1
Case'd Not possible because DIi, j] cannot have a value greater than 'n'.
Case'b' Only possible if D[i, j] is a non-match case.
Possible in following two situations:
Case'c If DIi, j] is a non-match case.
If DIi, j] is a non-match case.

FIG. 5. CASES FOR OBSERVATION-2

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

226

A Novel Parallel Algorithm for Edit Distance Computation

Observation-3: If the edit distance in the i"" row is
increasing and the edit distance in previous row is
decreasing. Possible cases, depicted in Fig. 6.

Observation-4: If theedit distancein thei'" row remains
same and the edit distance in previous row isincreasing.
Possible cases, depicted in Fig. 7.

Observation-4(a): If the case ‘a of observation 4
continuesfor the next column, then it would definitely be
amatch caseat DJi, j+1]. This self-explanatory situation
isdepictedinFig. 8.

Observation-5: If theedit distancein thei® row remains
same and the edit distance in previous row also remains
same. Possible cases, depicted in Fig. 9.

Observation-6: If the edit distancein thei® row remains
same and the edit distance in previousrow isdecreasing.
Possible cases, depicted in Fig. 10.

Observation-7: If the edit distance in the i™" row is
decreasing and the edit distance in previous row is
increasing. Possible cases, depicted in Fig. 11.

Cas (a) Case (b) Case (¢)
j-1 j j-1 j j-1 j
i-1 n-1 n-2 i-1 n n-1 i-1 n+1 n
i n n+1 i n n+1 i n n+1
Case'd Not possible because DJi,j] cannot have a value greater than n-1'.
Case'b' Not possible because DJi,j] cannot have a value greater than 'n'.
Possible in following two situations:
Case'c If D[i,j] is a match case.
If D[i,j] is a non-match case.
FIG. 6. CASES FOR OBSERVATION-3
Cae (a) Case (b) Case (c)
j-1 j j-1 j j-1 j
i-1 n-1 n i-1 n n+1 i-1 n+1 n+2
i n n i n n i n n
Case 'd Possible if D[i,j] is a non-meatch case.
Case'b' Possible if D[i,j] is a match case.
Case'c' Not possible because D[i,j] cannot have a value less than 'n+1".
FIG. 7. CASES FOR OBSERVATION-4
j-1 j jt1
i-1 n-1 n n+1
i n n N
FIG. 8. STUATION FOR OBSERVATION-4(A)
Case () Case (b) Case (c)
-1 j -1 j -1 j
i-1 n-1 n-1 i-1 n n i-1 n+1 n+1
i n n i n n i n N
Case'd Possible if D[i,j] is a non-metch case.
Case'b' Possible if D[i,j] is a metch case.
Case'c Not possible because DJi,j] cannot have a value less than 'n+1".

FIG. 9. CASES FOR OBSERVATION-5

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

2217

A Novel Parallel Algorithm for Edit Distance Computation

Observation-8: If the edit distance in the i"" row is
decreasing and the edit distancein previousrow remains
same. Possible cases, depicted in Fig. 12.

Observation-9: If the edit distance in the i"" row is
decreasing and the edit distance in previous row is also
decreasing. Possible cases, depicted in Fig. 13.

last match case D[]

1+1)

Theorem-1: For anon-match case D[i, j+k] (k> 0) with

DIi, j+k] = min(D[i-1, j-1]+k, D[i-1, (j+k)-1]+1, D[i-1, j+k

Proof: AsDJi, j] isamatch case, D[i,j]= DJ[i-1,j-1].

Ca (a) Case (b) Case (¢)
j-1 j j-1 j j-1 j
i-1 n-1 n-2 i-1 n n-1 i-1 n+1
i n n i n n i n N
Case'd Not possible because DJi,j] cannot have a value greater than 'n-1'.
Case'b' Possible if D[i,j] is a match case.
Case'c Possible if ifD[i,j] is a non-meatch case.
FIG. 10. CASES FOR OBSERVATION-6
Ca (a) Case (b) Case (¢)
j-1 j j-1 j j-1 j
i-1 n-1 n i-1 n n+1 i-1 n+1 n+2
i n n-1 i n n-1 i n n-1
Case'd Possible if D[i,j] is a match case.
Case'b' Not possible because DJi,j] cannot have a value less than 'n’.
Case'c Not possible because DJi,j] cannot have a value less than 'n+1".
FIG. 11. CASES FOR OBSERVATION-7
Case () Case (b) Case (c)
j-1 i j-1 i -1 i
i-1 n-1 n-1 i-1 n n i-1 n+1 n+1
i n n-1 i n n-1 i n n-1
Case'd Possible if D[i,j] is a metch case.
Case'b' Not possible because DJi,j] cannot have a value less than 'n'.
Case'c Not possible because DJi,j] cannot have a value less than 'n+1".
FIG. 12. CASES FOR OBSERVATION-8
Case () Case (b) Case (c)
j-1 i j-1 i -1 i
i-1 n-1 n-2 i-1 n n-1 i-1 n+1 n
i n n-1 i n n-1 i n n-1
Case'd Possible if D[i,j] is a metch case.
Case'b' Not possible because DJi,j] cannot have a value less than 'n-1'.
Case'c Not possible because DJi,j] cannot have a value less than 'n+1".
FIG. 13. CASES FQR OBSERVATION-9
Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

228

A Novel Parallel Algorithm for Edit Distance Computation

A non-match case D[i, j+k] (k > 0), with last match case
D[i,j], may happen under Observations-1 (Caseb and c),
Observation-2 (Case b and c), Observation-3 (Case c),
Observation-4 (Case a), Observation-5 (Case a), and/or
Observation-6 (Casec).

Fact-1: Under Observations-1 (Case b and c) the edit
distanceini row andin (i-1)" row areincreasing fromthe
last match case. Inthiscase, D[i, j+k] would haveincreased
‘k’ timesfrom DJ[i j] or D[i-1, j-1]. Hence, for D[i, j+K], D[i-
1,j-1]+k would serve asit will be minimum out of DJ[i-1, j-
1]+k, D[i-1, (j+k)-1]+1, and D[i-1, j+K]+1.

Fact-2: Under Observation-2 (Case b and ¢), and
Observation-3 (Case c) the edit distance in i row is
increasing and in (i-1)"" row is decreasing or stays same
from the last match case. In this case, edit distancein (i-
1) row will belessthan edit distanceini® row. Hence, for
D[i, j+k], D[i-1, (j+k)-1]+1 or D[i-1, j+k]+1would serve.

Fact-3: Under Observations-4(a), it cannot continue.

Fact-4: Under Observation-5 (Case a) and Observation-6
(Casec), the edit distance in i row remains same and in
(i-1)" row isdecreasing or stays same from the last match
case. In this case, edit distancein (i-1)" row will be less
than edit distance inith row. Hence, for D[i, j+k], D[i-1,
(j+k)-1]+1or D[i-1, j+k]+1 would serve.

Based on above facts, for any valid permutation of
Observations-1 (Case b and c), Observation-2 (Case b
and c), Observation-3 (Case c), Observation-4 (Case @),
Observation-5 (Case a), and/or Observation-6 (Case c),
DI[i,j+k] =min(D[i-1,j-1]+k, D[i-1, (j+k)-1]+1, D[i-1, j+k
1+D).

According to Theorem-1, the dependency for the
computation of edit distance has been shifted to previous
row only as depicted in Fig. 14. It makes it possible to
compute a complete row of D in parallel having the
information of last match case available.

For a single character in firs string, it is possible to
calculate arow containing last matching index against all
thecharactersin second string. Similarly, itisalso possible
to calculate such row for all unique characters in first
string. Let us call it Ml (match Index) table. Given ‘u’
unique characters in first string and ‘n’ characters in
second string, M1, table can be built using therecurrence
in Equation (2).

0 If j=0
MI;; = i If match case %)
Ml;; 4, Otherwise

Here, it is important to note that the cost of computing
MI tableis significantly low as compared to the overall
computation required to build an edit distance table.The
Ml table is computed only for unique charactersin the
smaller string and considering a string composed of
conventional Latin letters, the number of unique
characters can be at most twenty-six. Considering any
other alphabet, this number would always remain a
constant so the computation of M1 tablewould be mostly
a constant time operation. All the rows of M1 table can
also be computed in parallel because the computation of

D[i-1, j-1] D[i-1, j]

D[i-1, j+k-1]

A\

D[i-1,j+k]

D[i j]
(Last Match
case)

DIi, j+k]

FIG. 14. SHIFT OF DEPENDENCY ON PREVIOUS ROW

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

229

A Novel Parallel Algorithm for Edit Distance Computation

its each row isindependent. Thisfact further reducesthe
computation time of MI table and makes it a low cost
operation.

Parallel Algorithm: Given two strings of length mand n,
adistancetable D of size(m+1, n+1) isbuiltinfollowing
steps:

@) Build M1, by computing each of its row in
parallel.
%) Build D row by row. Compute anindividual row

in parallel accordingto Theorem 1

Now it will be possible to simultaneously compute each
cell inarow of tableD.

Analysis: Given two strings of length ‘m’ and ‘n’, our
new parallel algorithmiscapable of computing acomplete
row of D in parallel sothe computation of all thecellsina
row can be distributed among processing nodes. In this
way, the computation of D can be completed in min(m,n)
iterations because it is always possibl e to take max(m,n)
astherowsof thetable. Whereas, state-of-the-art parallel
algorithm that isbased on diagonal approach hasmax(m,n)
iterations. This phenomenon will be dominant when
lengths of both the strings mismatch greatly, hence our
algorithmwill significantly perform better than diagonal
based algorithm.

Another facet of the algorithm is its load balanced
approach. Eachiteration of the a gorithm has same amount
of computation so all the independent tasks in a single
iteration can be distributed uniformly among the
processing nodes. On the other hand, diagonal based
paralld algorithm lacksthisfeature.

Our agorithm will aso have an additive advantage in
implementation. Asthe algorithm processes row by row,
it can alwaysexploit spatial locality in underlying memory
system. The diagonal based algorithm requiresto access
cellsfrom different rowsand columnsinitseachiteration
and that will alwaysincrease cache misses.

5. IMPLEMENTATION AND RESULTS

The algorithm is implemented for shared memory
environment using OpenMP in conjunction with C++.
OpenMP has emerged as a shared-memory standard and
it isprogramming languagetail ored for ashared-memory
multiprocessing so it is a natural fit compared to other
API's.

Theimplementationisrun on Intel Core-i3-2370M 2.40
GHZ having 2 coresand 4 logical processors and results
are compared with sequential algorithm and diagonal
paralel agorithm. The algorithm is utilizing CPU more
than 90% so withincreased computing power i.e. number
of processors, this algorithm will perform even better.
Strings are generated randomly of equal sizesand results
are averages of fifteen experiments.

Results of execution time, speedup, and efficiency are
presented in Fig. 15(a-c). Considering strings of sizem
and n, the problem sizeisdefined interms of m+n. For the
first scenario, m and n are equal. Execution time is
calculated in milliseconds. Speedup is the measure of
increase of performance of parallel algorithm compared
to sequential algorithm. Efficiency is a measure of the
fraction of timefor which aprocessing element isusefully
employed. It is defined as the ratio of speedup to the
number of processing elements. From the results, it is
evident that our algorithm outperforms the state-of -the-
art parallel approach to solve the edit distance problem.
Particularly, it hasachieved almost linear speedup that is
result of |oad balanced feature of our parallel algorithm.

The experimentswere also performed for another setting
when the length of both the strings is not equal and
resulting in arectangular edit distancetable. Inthissetting,
the experimentswere performed for different proportion
of mand nassuming om =n. The awasvaried from 2 to
9000. For increasing value of o, the performance of
diagonal based approach becomes closer to the

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

230

A Novel Parallel Algorithm for Edit Distance Computation

performance of sequential algorithm whereas, our

algorithm shows consistent behavior for varying values

of & Theresults presentedin Fig. 16(a-c) arefor oo = 5000.

Execution Time (ms)

Speedup

Efficiency

20000

15000

10000

5000

0 500 1000 1500 2000 2500 3000 3500 4000

: : : rSequenrtialAlg{)rithm =
Diagonal Parallel Algorithm

Our Parallel Algorithm = - -

Total Computations (mxnx10°)
(2) EXECUTION TIME

4 | Diaglona] Parallel Alg‘orithm e
il Our Parallel Algorithm ———
35 |- .
3 |?- 1
2.5 [
2 4 3
[~
LS Pl e 1
1} B
0.5 {
N M |
0 500 1000 1500 2000 2500 3000 3500 4000
Total Computations (mxnx10°)
(b) SPEEDUP
! Diag'onal Parallel A]glorithm i
Our Parallel Algorithm ——
0.8 1
0.5 | 1
. S
04 e, 4
02 B
0 L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000

Total Computations (mxnx10°)
(c) EFFICIENCY

FIG. 15. RESULTS AND COMPARISON WHEN M AND N ARE

EQUAL

Itisclear that our algorithm outperforms diagonal based

approach in terms of execution time, speedup, and

efficiency.
20000 ;) " Sequential Algorithm — —
Diagonal Parallcl Algorithm s
Our Parallel Algorithm =
- 15000 ~
E
QL
£
: 10000 ~
2
E
]
i
5000
0 - - - - + 4 - - "
0 500 1000 1500 2000 2500 3000 3500 4000
Total Computations (mxnx10")
(a) EXECUTION TIME
4 ! Diagonal Parallel Algorithm — - —
Our Parallel Algorithm
35 F 1
3+ 4
~ 25
3
g2 2t]
2) "‘-—--"_"---_._____\—'—____._-—--_'_
1.5
= . e mad
0.5 17
0 i A L i A
0 500 1000 1500 2000 2500 3000 3500 4000
Total Computations (mxnx10°)
(b) SPEEDUP
Iy : Diaéonal Parallel Algorithm e
Our Parallel Algorithm
03 = 1
's\ 0_5 3 1
5
é) e — — R — —
M 04 1
02 . - - . |

0 A A " A J
0 500 1000 1500 2000 2500 3000 3500 4000
Total Computations (mxnx10°)

(c) EFFICIENCY

FIG. 16. RESULTS AND COMPARISON FOR
A = 5000

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

231

A Novel Parallel Algorithm for Edit Distance Computation

6. CONCLUSION

Our novel parallel approach to compute edit distance
is a load balanced approach that effectively utilizes
the underlying computing resources. It exploits cache
management of the architecture by working only in
rows. It provides significant additive advantages when
problem size is huge and particularly when the length
of one string is quite large as compared to other. The
results of implementation in OpenMP are promising
and show improved performance as compared to state-
of-the-art diagonal based approach. Further, we plan
to implement and test our algorithm for varying parallel
computing platforms. We also intend to use our
algorithm to solve somereal life problemsthat are based
on edit distance.

ACKNOWLEDGEMENT

Theauthors arethankful to the Punjab University College
of Information Technology, University of Punjab, Lahore,
Pakistan, for providing necessary infrastructure to

conduct this research.

REFERENCES

[1] Lan, H., Chan, H.,Xu, Y., Schmidt, K., Peng, B., and Liu,
W., “Parallel Algorithms for Large-Scale Biological
Sequence Alignment on Xeon-Phi Based Clusters’, BMC
Bioinformatics, Volume 17, No. 9, pp. 11-23, 2016.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Qu, J, Zhang, G., Fang, Z., and Liu, J., “A Parallel
Algorithm of String Matching Based on Message Passing
Interface for Multicore Processors’, International
Journal of Hybrid Information Technology, Volume 9,
No. 3, pp. 31-38, 2016.

Mitani, Y., Ino, F, and Hagihara, K., “Parallelizing Exact
and Approximate String Matching via Inclusive Scan on
a GPU", |EEE Transactions on Parallel and Distributed
Systems, Volume 28, No. 7, pp. 1989-2002, 2017.

Yang, C., and Zhang, K., “Paralel Approaches to Edit
Distance and Approximate String Matching”, Carnegie
Mellon University, 2014.

Dhraief, A., Issaoui, R., and Belghith A., “Parallel
Computing the Longest Common Subsequence (LCS) on
GPUs: Efficiency and Language Suitability”, 1
International Conference on Advanced Communications
and Computation, 2011.

Yang, J., Xu, Y., and Shang, Y., “An Efficient Parallel
Algorithm for Longest Common Subsequence Problem
on GPUs", Proceedings of World Congress on
Engineering, London, UK, 2010.

Kloetzli, J., Strege, B., Decker, J., and Olano, M.,
“Parallel Longest Common Subsequence using Graphics
Hardware”, Eurographics Symposium on Parallel
Graphics and Visualization, 2008.

Churchill, D., Gillard, P, Hamilton, M., and Wareham,
T., “Prototyping Parallel Sequence Edit Distance
Algorithms in FPGA Hardware”, Proceedings of
14"Annual New Found Land Electrical and Computer
Engineering Conference, 2004.

Niewiarowski, A., and Stanuszek, M., “Parallelization of
the Levenshtein Distance Algorithm”, Technical
Transactions, Volume 3-NP, pp. 109-122, 2014.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

232

