Article Information  
A New Framework for Interactive Images Segmentation

Keywords: Cellular Automata, Multi-Label, Interactive Segmentation, Generic Photos, Iterative Segmentation Scheme

Mehran University Research Journal of Engineering & Technology

Volume 36 ,  Issue 3


1. Protiere, A., and Sapiro, G., "Interactive Image Segmentation via Adaptive Weighted Distances", IEEE Transactions on Image Processing, Volume 16, No. 4, pp.1046-1057, USA, 2007
2. Von Neumann, J., and Burks, A.W., "Theory of Self Reproducing Automata", IEEE Transactions on Neural Networks, Volume 5, No. 1, pp.3-14, USA, 1966.
3. Vezhnevets, V., and Konouchine, V., "GrowCut: Interactive Multi-Label ND Image Segmentation by Cellular Automata", Proceedings of Graphicon, pp. 150-156, Russia, June, 2005
4. Elyor, K., and Lee, G., "Automatic Object Segmentation using Mean Shift and Growcut", 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, pp. 184-189, Korea, January, 2013
5. Arndt, O.J., Scheuermann, B., and Rosenhahn, B., "Region Cut-Interactive Multi-Label Segmentation Utilizing Cellular Automaton", IEEE Workshop on Applications of Computer Vision, pp. 309-316, USA, January, 2013
6. Yamasaki, T., Chen, T., Yagi, M., Hirai, T., and Murakami, R., "Comparative Study of Interactive Seed Generation for Growcut-Based Fast 3D MRI Segmentation", Annual Summit and Conference on Signal & Information Processing Association, Asia-Pacific, pp. 1-4, USA, December, 2012
7. Kim, E., Shen, T., and Huang, X., "A Parallel Cellular Automata with Label Priors for Interactive Brain Tumor Segmentation", IEEE 23rd International Symposium on Computer-Based Medical Systems, pp. 232-237, Australia, October, 2010
8. Wu, Y., "Gaussian Mixture Model", Connexions, USA, 2005
9. Greig, D.M., Porteous, B.T.,and Seheult, A.H.,"Exact Maximum a Posteriori Estimation for Binary Images", Journal of the Royal Statistical Society, pp. 271-279, UK, 1989
10. Boykov, Y., and Kolmogorov, V., "An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 26, No. 9, pp. 1124-1137, USA, 2004
11. Rasmussen, C.E., "The Infinite Gaussian Mixture Model", Advances in Neural Information Processing Systems, Volume 12, pp. 554-560, USA, 1999
12. Choong, M.Y., Kow, W.Y., Chin, Y.K., Angeline, L., and Teo, K.T.K., "Image Segmentation via Normalised Cuts and Clustering Algorithm", IEEE International Conference on Control System, Computing and Engineering, pp. 430-435, Malaysia, November, 2012.
13. Cheng, Y., "Mean Shift, Mode Seeking, and Clustering", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 17, No. 8, pp. 790-799, USA, 1995
14. Rother, C., Kolmogorov, V., and Blake, A., "Grabcut: Interactive Foreground Extraction using Iterated Graph Cuts", ACM Transactions on Graphics, Volume 23, No. 3, pp. 309-314, USA, 2004.
15. Grady, L., "Random Walks for Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 28, No. 11, pp. 1768-1783, USA, 2006
16. Kim, T.H., Lee, K.M., and Lee, S.U., "Generative Image Segmentation using Random Walks with Restart", Computer Vision–ECCV, Springer Berlin Heidelberg, pp. 264-275, France, October, 2008.
17. Heimann, T., Thorn, M.T.,Kunert, and Meinzer, H., "New Methods for Leak Detection and Contour Correction in Seeded Region Growing Segmentation", 20th ISPRS Congress, pp. 317–322, Istanbul, 2004
18. Gulshan, V., Rother, C., Criminisi, A., Blake, A., and Zisserman, A., "Geodesic Star Convexity for Interactive Image Segmentation", IEEE Conference on Computer Vision and Pattern Recognition, pp. 3129-3136, USA, June, 2010
19. Edward, F.M., "Gedanken-Experiments on Sequential Machines, Automata Studies, Annals of Mathematics Studies, No. 34",Princeton University Press, pp. 129–153, Princeton, NJ, 1956
20. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., and Zisserman, A., "The Pascal Visual Object Classes (VOC) Challenge", International Journal of Computer Vision, Volume 88, No. 2, pp. 303-338, Netherlands, 2010
21. Felzenszwalb, P.F., and Huttenlocher, D.P., "Efficient Graph-Based Image Segmentation", International Journal of Computer Vision, Volume 59, No. 2, pp.167-181, Netherlands, 2004.
22. Kolmogorov, V., and Zabin, R., "What Energy Functions Can be Minimized via Graph Cuts?", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 26, No. 2, pp. 147-159, USA, 2004
23. Grady, L., and Funka-Lea, G., "Multi-Label Image Segmentation for Medical Applications Based on GraphTheoretic Electrical Potentials", Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, Springer Berlin Heidelberg, pp. 230-245, Czech Republic, 2004.
24. Zhao, Y., Nie, X., Duan, Y., Huang, Y., and Luo, S., "A Benchmark for Interactive Image Segmentation Algorithms", IEEE Workshop on Person-Oriented Vision, pp. 33-38, USA, January, 2011
25. McGuinness, K., and O’connor, N.E., "A Comparative Evaluation of Interactive Segmentation Algorithms", Pattern Recognition, Volume 43, No. 2, pp. 434-444, England, 2010
26. Freixenet, J., Muñoz, X., Raba, D., Martí, J., and Cufí, X., "Yet Another Survey on Image Segmentation: Region and Boundary Information Integration", Computer Vision-ECCV, Springer Berlin Heidelberg, pp. 408-422, Denmark, May 2002
27. Estrada, F.J., and Jepson, A.D., “Quantitative Evaluation of a Novel Image Segmentation Algorithm”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Volume 2, pp. 1132-1139, USA, June 2005
28. Zhang, H., Fritts, J.E., and Goldman, S.A., "Image Segmentation Evaluation: A Survey of Unsupervised Methods", Computer Vision and Image Understanding, Volume 110, No. 2, pp. 260-280, USA, 2008.
29. Ge, F., Wang, S., and Liu, T., "New Benchmark for Image Segmentation Evaluation", Journal of Electronic Imaging, Volume 16, No. 3, pp. 33011, USA, 2007.