Mehran University Research Journal Of Engineering &
Technology (HEC Recognized In Category "X")
Publishing Since 1982.



For Authors
For Readers
Article Information  
Comparison of Gain Measurement Techniques for Characterization of Quantum Dot Lasers

Keywords: Hakki & Paoli, Segmented-Contact Method, Integrated-Amplifier, Net Modal Gain, Quantum Dot.

Mehran University Research Journal of Engineering & Technology

Volume 35 ,  Issue 4

HIFSA   SHAHID ,

References
1. Greenwood, P.D.L., Childs, D.T.D., Kennedy, K., Groom, K.M., Hugues, M., Hopkinson, M., Hogg, R.A., Krstajic?, N., Smith, L.E., Matcher, S.J., Bonesi, M., MacNeil, S., and Smallwood, R., "Quantum Dot Super Luminescent Diodes for Optical Coherence Tomography: Device Engineering", IEEE Journal of Selected Topics in Quantum Electronics, Volume 16, No. 4, pp. 1015-1022, UK, April, 2010
2. Rafailov, E.U., Cataluna, M.A., and Sibbett, W., "Mode- Locked Quantum-Dot Lasers", Nature Photonics, Volume 1, pp. 395-401, US, January, 200
3. Otsubo, K., Hatori, N., Ishida, M., Okumura, S., Akiyama, T., Nakata,Y., Ebe, H., Sugawara. M., and Arakawa, Y., "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3μm P-Doped Quantum-Dot Lasers without Current Adjustments", Japanese Journal of Applied Physics, Part-B, Volume 43, No. 8, pp. 1124-1126, Japan, July, 2004.
4. Fathpour S., Mi, Z., Bhattacharya, P., Kovsh, A.R., Mikhrin, S.S., Krestnikov, I.L., Kozhukhov, A.V., and Ledentsov, N.N., "The Role of Auger Recombination in the Temperature-Dependent Output Characteristics (T0=?) of P-Doped 1.3μm QD Lasers", Applied Physics Letters, Volume 85, pp. 5164-5166, US, November, 2004.
5. Shahid, H., Childs, D.T.D., Stevens, B.J., Hogg, R.A., and Smowton, P.M., "Comparison of Gain Measurement Techniques for 1.3?m Quantum Dot Lasers", Novel In- Plane Semiconductor Lasers-X, Volume 7953, pp. 79531W, US, February, 2011
6. Wang, C., Gioannini, M., Montrosset, I., Even, J., and Grillot, F., "Influence of Inhomogeneous Broadening on the Dynamics of Quantum Dot Lasers", Physics and Simulation of Optoelectronic Devices-XXIII, Volume 9357, pp. 93570L, US, February, 2015.
7. Schliwa, A., Schmeckebier, H., Stubenrauch, M., Spiegelberg, M., Bimberg, D., and Eisenstein, G., "Comparison of Dynamic Properties of Ground and Excited-State Emission in P-Doped InAs/GaAs Quantum- Dot Lasers", Applied Physics Letters, Volume 104, No. 18, pp. 181101, US, May, 2014.
8. Wang, C., Osi´nski, M., Even, J., and Grillot, F., "Phase- Amplitude Coupling Characteristics in Directly Modulated Quantum Dot Lasers", Applied Physics Letters, Volume 105, No. 22, pp. 233103-21105, US, December, 2014.
9. Kabi, S., and Perera, A.U., "Effect of Quantum Dot Size and Size Distribution on the Inter-Sublevel Transitions and Absorption Coefficients of III-V Semiconductor Quantum Dot", Journal of Applied Physics, Volume 117, No. 12, pp. 124303, US, March, 2015.
10. Bhowmick, S., Baten, M.Z., Frost, T., Ooi, B.S., and Bhattacharya, P., "High Performance InAs/ In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55?m Tunnel Injection Laser", IEEE Journal of Quantum Electronics, Volume 50, No. 1, pp. 7, UK, January, 2014.
11. Hakki, B.W., and Paoli T.L., "Gain Spectra in GaAs Double-Heterostructure Injection Lasers", Journal of Applied Physics, Volume 46, pp.1299, US, September, 2008
12. Blood, P., Lewis, G.M., Smowton, P.M., Summers, H., Thomson, J., and Lutti, J., "Characterization of Semiconductor Laser Gain Media by the Segmented Contact Method", IEEE Journal of Selected Topics in Quantum Electronic, Volume 9, pp. 1275-1282,UK, September, 2003.
13. Shahid, H., Childs, D.T.D., Majid, M.A., Kennedy, K., Airey, R., Hogg, R.A., Clarke, E., Spencer, P., and Murray, R., "Gain Spectrum Measurement Using the Segmented Contact Method with an Integrated Optical Amplifier", Journal of Applied Physics, Volume115, pp. 163105, US, April, 2014
14. Howe, P., LeRu, E.C., Clarke, E., Abbey, B., Murray, R., and Jones, T.S., "Quantification of Segregation and Strain Effects in InAs/GaAs Quantum Dot Growth", Journal of Applied Physics, Volume 98, pp. 113511, UK, December, 2005.
15. Majid, M.A., Childs, D.T.D., Shahid, H., Chen, S.C., Kennedy, K., Airey, R.J., Hogg, R.A., Clarke, E., Spencer, P., and Murray, R., "Excited State Bilayer Quantum Dot Lasers at 1.3um", Japanese. Journal of Applied Physics, Volume 50, pp. 04DG10, Japan, April, 2011
16. Xin, Y.C., Li,Y., Martinez, A., Rotter, T.J., Su, H., Zhang, L., Gray, A.L., Luong, S., Sun, K., Zou, Z., Zilko, J., Varangis, P.M., and Lester, L.F., "Optical Gain and Absorption of QDs Measured Using an Alternative Segmented Contact Method", IEEE Journal of Quantum Electronics, Volume 42, pp. 725-732, UK, July, 2006
17. Grundmann, M., and Bimberg, D., "Theory of Random Population for Quantum Dots", Physical Review-B, Volume 55, No. 15, pp. 9740, Germany, April, 1997
18. Agrawal, G.P., and Dutta, K.N., "Semiconductor Lasers", 2nd Edition, Chapter-2, Van Nostrand Reinhold, New York, USA, 1993.
19. O'Driscoll, I., Hutchings, M., Smowton, P.M., and Blood, P., "Many-Body Effects in InAs/GaAs QD Laser Structures", Applied Physics Letters, Volume 97, pp. 141102, UK, October, 2010
20. Shahid, H., "Free Carrier Distribution Criterion in Quantum Dot Lasers", Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, pp. 309-316, Jamhsoro, Pakistan, July, 2016.